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Abstract. We study the limit as p→∞ of the first non-zero eigenvalue λp

of the p-Laplacian with Neumann boundary conditions in a smooth bounded

domain U ⊂ Rn. We prove that λ∞ := limp→+∞ λ
1/p
p = 2/diam(U), where

diam(U) denotes the diameter of U with respect to the geodesic distance

in U . We can think of λ∞ as the first eigenvalue of the ∞-Laplacian with

Neumann boundary conditions. We also study the regularity of λ∞ as a

function of the domain U proving that under a smooth perturbation Ut

of U by diffeomorphisms close to the identity there holds that λ∞(Ut) =

λ∞(U)+O(t). Although λ∞(Ut) is in general not differentiable at t = 0, we

show that in some cases it is so with an explicit formula for the derivative.

1. introduction

Denote by λp the first non-zero eigenvalue of the p-Laplacian with Neumann

boundary conditions in a smooth bounded domain U ⊂ Rn. The aim of this paper

is two-fold. We first study the asymptotic behaviour of λp as p → ∞, obtaining

that

λ∞ := lim
p→+∞

λ1/p
p =

2

diam(U)
,

where diam(U) denotes the diameter of U with respect to the geodesic distance

in U (see (12) below), and also identify the variational limit problem defining λ∞.

Analogous results have been obtained previously for the first eigenvalue of the p-

Laplacian with Dirichlet or Steklov boundary conditions. Next, using our previous

result we study the regularity of λ∞ = λ∞(U) with respect to U . Considering
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smooth perturbations Ut of U by diffeomorphisms close to the identity, we prove

that λ∞(Ut) = λ∞(U) +O(t). Notice that λ∞(Ut) is in general not differentiable

at t = 0. However, we prove that it is when diam(U) is reached at a unique pair

of points.

The limit as p→∞ of the first eigenvalue λp,D of the p-Laplacian with Dirich-

let boundary condition was studied in [15], [14] (see also [3] for an anisotropic

version). In those papers the authors prove that

(1) λ∞,D := lim
p→∞

λ
1/p
p,D = inf

v∈W 1,∞
0 (Ω)

‖∇v‖L∞(Ω)

‖v‖L∞(Ω)
=

1

R
,

where R is the largest possible radius of a ball contained in U . In addition, we have

existence of extremals, i.e., functions where the above infimum is attained. These

extremals can be constructed taking the limit as p → ∞ in the eigenfunctions

of the p−laplacian eigenvalue problem (see [14]) and are viscosity solutions of

the following eigenvalue problem (called the infinity eigenvalue problem in the

literature): {
min {|Du| − λ∞,Du, ∆∞u} = 0 in U,

u = 0 on ∂U.

The limit operator limp→∞∆p = ∆∞ is the ∞-Laplacian given by

∆∞u = −〈D2uDu,Du〉 = −
N∑

i,j=1

∂u

∂xj

∂2u

∂xj∂xi

∂u

∂xi
.

This fact can be understood in the sense that solutions to ∆pvp = 0 with a

Dirichlet data vp = f on ∂Ω converge as p→∞ to the solution to ∆∞v = 0 with

v = f on ∂Ω in the viscosity sense (see [2], [5] and [7]). This operator appears

naturally when one considers absolutely minimizing Lipschitz extensions in Ω of

a boundary data f (see [1], [2], and [13]).

Recently the authors in [6] relate λ∞,D with the Monge-Kantorovich distance

W1. Recall that the Monge-Kantorovich distance W1(µ, ν) between two proba-

bility measures µ and ν over Ū is defined by

(2) W1(µ, ν) = max
v∈W 1,∞(U), ‖∇v‖∞≤1

∫
U

v (dµ− dν).

It was proved in [6] that

(3) λ−1
∞,D = sup

µ∈P (U)

W1(µ, P (∂U)),
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where P (U) and P (∂U) denotes the set of probability measures over Ū and ∂U .

Notice that the maximum is easily seen to be reached at δx where x ∈ U is a most

inner point so that we can recover (1) from (3).

The case of Steklov boundary condition has also been investigated recently.

Indeed the authors in [9] (see also [17] for a slightly different problem) studied

the behaviour as p → +∞ of the so-called variational eigenvalues λk,p,S , k ≥ 1,

of the p-Laplacian with a Steklov boundary condition. In particular they proved

that

lim
p→+∞

λ
1/p
1,p,S = 1 and λ2,∞,S := lim

p→+∞
λ

1/p
2,p,S =

2

diam(U,Rn)
,

where here diam(U,Rn) denotes the diameter of U for the usual Euclidean distance

in Rn, and also identify the limit problem defining λ2,∞,S .

The purpose of this paper is to complete these studies considering the case of

the Neumann boundary condition. It is known (see [16]) that the first eigenvalue

of the p-Laplacian with Neumann boundary condition in a smooth bounded do-

main U ⊂ Rn is 0 with eigenspace ∼ R, and that it is isolated. The first non-zero

eigenvalue λp of the p-Laplacian is then defined by the minimization problem

(4) λp = inf
u∈W 1,p(U)

{∫
U

|∇u|p dx :

∫
U

|u|p dx = 1,

∫
U

|u|p−2u dx = 0

}
.

According to [16], λp can be characterized using Ljusternik-Schnirelman’s genus

by the following min-max formula

(5) λp = inf
A∈Ap,2

max
u∈A

∫
U
|∇u|p dx∫
U
|u|p dx

where Ap,2 = {A ⊂ W 1,p(U), A is compact, A = −A, γ(A) ≥ 2}, and γ(A) =

inf {n ∈ N, ∃φ ∈ C(A,Rn\{0}) odd } is the genus of A. By standard arguments

the infimum in (4) is attained by some up ∈W 1,p(U) satisfying the problem

(6)

 ∆pup = λp|up|p−2up in U,

|∇up|p−2∂νup = 0 on ∂U,

where ∆pu = −div(|∇u|p−2∇u). According to [16][thm 4.1] and [18], up ∈
C1,α(Ū) for some α > 0.

We first identify the limit problem obtained by taking the limit p → +∞ in

(4) and provide some information on the asymptotic behaviour of the up.
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Theorem 1.1. There holds

(7) lim
p→+∞

λ1/p
p = λ∞,

where λp is defined by (4), and

(8) λ∞ := inf
{
‖∇u‖L∞(U); u ∈W 1,∞(U) s.t. max

U
u = −min

U
u = 1

}
.

Moreover if up is a normalized minimizer for λp, then, up to a subsequence, up
converge in C(Ū) to some minimizer u∞ ∈ W 1,∞(U) of λ∞ which is a solution

of

F (u,∇u,D2u) = 0 in U,

∂u

∂ν
= 0 on ∂U,

(9)

in the viscosity sense, where

(10) F (u, η,A) =


min {−(Aη, η), |η| − λ∞u} in {u > 0},
max {−(Aη, η),−|η| − λ∞u} in {u < 0},
−(Aη, η) in {u = 0}.

Our second result gives the value of λ∞. First notice that if U is not connected

then considering a constant function equal to 1 in one connected component and

−1 in another one, we obtain that λ∞ = 0. Thus, from now on we will assume

that U is connected. The value of λ∞ turns out to be related to the intrinsic or

geodesic diameter of U that we now define. Given two points x, y ∈ Ū we denote

by d(x, y) their intrinsic or geodesic distance defined by

(11) d(x, y) = inf
γ∈Γ(x,y)

Long(γ),

the infimum being taken over the class Γ(x, y) of Lipschitz curves in Ū joining x

and y. The intrinsic diameter diam(U) of U is then defined as

(12) diam(U) := max
(x,y)∈Ū

d(x, y) = max
(x,y)∈∂U

d(x, y).

We have the following result:

Theorem 1.2. There holds

(13)
2

λ∞
= diam(U),

where λ∞ is defined in (8), and diam(U) in (12).
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Consider for example the bounded lipschitz open subset U ⊂ R2 defined in R2
+ as

the intersection of the sets R2
+\D((0, 0), 1) and D((0, 1/2),

√
5/2). Then diam(U)

is attained by the arc of circle C((0, 0), 1) so that diam(U) = π. Moreover the

function defined in polar coordinate by u(x, y) = 2
π θ − 1 is admissible for λ∞ so

that λ∞ ≤ ‖∇u‖∞ = 2
π = 2/diam(U). The reverse inequality is easy to obtain

(see Step 3.1 below).

We also expresses λ∞ as the value of a maximization problem involving the

Monge-Kantorovich distance in the spirit of (3). We denote by M(Ū) the space of

bounded measures over Ū . Given σ ∈M(Ū), we denote its positive and negative

part by σ+ and σ− so that σ = σ+ − σ−, and |σ| = σ+ + σ−. Then we have,

Theorem 1.3. There holds

(14)
2

λ∞
= max
σ∈M(Ū),

∫
Ū
σ+=

∫
Ū
σ−=1

W1(σ+, σ−)

where λ∞ is defined in (8), and W1 in (2).

We now turn our attention to the study of the regularity of λ∞(U) as a function

of U . Maximization or minimization of eigenvalues with respect to the domain

is an active area of research; see the survey [11]. Notice that the equation (9)

for the eigenfunctions is not linear, not in divergence form, and, in addition,

no regularity result is known for the eigenfunctions (further that they belong to

W 1,∞(U)). Also remark that the variational quotient (8) does not involve Lp-

integrals but the L∞-norm that is not differentiable, and that the diameter of U

is defined by a sup inf problem. All these facts make the study of the dependence

of λ∞ with respect to the domain a nontrivial task.

From now on we assume that U is connected. Given a smooth vector field V

on Ū , we consider the perturbed subset Ut defined for small t by

(15) Ut = φt(U) with φt(x) = x+ tV (x).

Our purpose is to study the regularity of the map t → λ∞(Ut) at t = 0, and in

particular to study the existence of its derivative at t = 0, the so-called shape-

derivative. In the case of Dirichlet boundary condition this study has been done

recently in [20]. On the other hand, when considering λp(Ut), although we were

not able to find this result explicitely stated in the litterature, it is easy to see fol-

lowing [19] that, if λp(U) is simple, then the function t→ λp(Ut) is differentiable

at t = 0 with

(16)
d

dt
λp(Ut)|t=0 =

∫
∂U

(|∇up|p − λp|up|p)(V, ν) dσ,
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where up is a normalized extremal for λp(U), and ν is the exterior unit normal

vector to ∂U . The case p = 2 is well known (see [12] thm 5.7.2 p210). Observe

that formally passing to the limit p→ +∞ in (16) does not provide any sensitive

information concerning the possible derivative of λ∞(Ut) at t = 0.

We first prove, following ideas from [20], that

Theorem 1.4. There exists a contant C > 0 such that for |t| small

|λ∞(Ut)− λ∞(U)| ≤ Ct.

Notice that in general the function t→ diam(Ut) is not differentiable at t = 0

when diam(U) is attained at at least two pairs of points. For example take U =

B(0, 1) ⊂ R2 and V (x) = 2xη(|x− e2|) where e2 = (0, 1) and η : [0,+∞)→ [0, 1]

is a smooth cut-off function equal to 1 near 0. Then, diam(U) = 2 and

diam(Ut) =

{
|(1 + 2t)e2 − (−e2)| = 2(1 + t) if t ≥ 0,

2 otherwise,

so that t→ diam(Ut) is not differentiable at t = 0. When diam(U) is attained at

an unique pair of points but with at least two extremal curves, the function t→
diam(Ut) is still not differentiable at t = 0. Consider for example the domain U ⊂
R2 bounded by the circle x2

1 +x2
2 = 1 and the ellipse

x2
1

4 +
4x2

2

9 = 1. Then diam(U)

is attained at the pair of points {(−2, 0), (2, 0)} with two extremal curves: the

first one is composed of the union of the segment [(−2, 0), (− 1
2 ,
√

3
2 )], the arc of the

circle C = C((0, 0), 1) from (− 1
2 ,
√

3
2 ) to ( 1

2 ,
√

3
2 ) and the segment [(1

2 ,
√

3
2 ), (0, 2)].

The second one is its reflection through {x2 = 0}. Then diam(U) = 2(
√

3 + π
6 ).

We now consider the diffeomorphism φt defined to be the identity except in a

small neighborhood of C where it is

φt(x) =

{
(1− λt(x2))x, if x2 ≥ 0,

x, if x2 < 0,

where λt is chosen so that φt(C∩{x2 ≥ 0}) = Et∩{x2 ≥ 0}) with Et : x2
1+

x2
2

(1−t)2 =

1. A short computation show that λt(x2) = tx2
2 + O(t2). The shortest-path in

φt(U)∩R2
+ from (−2, 0) to (2, 0) is composed of the segment [(−2, 0), (− 1

2 ,
√

3
2 (1−

t))], the arc of the ellipse Et from (− 1
2 ,
√

3
2 (1−t)) to ( 1

2 ,
√

3
2 (1−t)) and the segment

[( 1
2 ,
√

3
2 (1− t)), (0, 2)]. Its length is diam(U)− t(π6 +

√
3

4 )+O(t2) which is less that
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diam(U) when t > 0. Hence we can see that

diam(φt(U)) =

{
diam(U)− t(π6 +

√
3

4 ) +O(t2) if t > 0,

diam(U) if t ≤ 0.

It follows that t → diam(Ut) is not differentiable at t = 0. As a conclusion

for the function t → diam(Ut) to be differentiable at t = 0 we must assume at

least that diam(U) is attained at an unique pair of points with an unique shortest-

curve. Indeed we can prove that under a slightly stronger assumption the function

t→ λ∞(Ut) is differentiable at t = 0 with an explicit formula for the derivative.

Theorem 1.5. Assume that

(1) diam(Ū) is attained at an unique pair of points (x∗, y∗),

(2) for any (x, y) ∈ ∂U × ∂U close to (x∗, y∗), there exists an unique curve γ

joining x to y such that d(x, y) = Long(γ).

Then t→ λ∞(Ut) is differentiable at t = 0 with derivative

(17)
d

dt
λ∞(Ut)|t=0 = − 2

diam(U)3

∫ 1

0

(DV (γ∗(s))γ∗
′
(s), γ∗

′
(s)) ds,

where γ∗ : [0, 1]→ Ū is the unique constant-speed curve joining x∗ to y∗ such that

diam(Ū) = d(x∗, y∗) = Long(γ∗).

In the particular case where γ∗ is the segment [x∗, y∗], e.g. if U is convex, then

γ∗(s) = x∗ + t(y∗ − x∗), s ∈ [0, 1], and∫ 1

0

(DV (γ∗(s))γ∗
′
(s), γ∗

′
(s)) ds =

∫ 1

0

d

ds
V (γ∗(s)) ds.(y∗ − x∗),

so that, in that case, formula (17) becomes

(18)
d

dt
λ∞(Ut)|t=0 = −2

(V (y∗)− V (x∗))(y∗ − x∗)
diam(U)3

.

Notice that if the segment (x∗, y∗) is strictly included in U then the extremal

curve for diam(Ut) is also a segment [x∗t , y
∗
t ] with x∗t → x∗, y∗t → y∗ and then

writing

diam(Ut) = max
(x,y)∈∂U×∂U close to (x∗,y∗)

|φt(x)− φt(y)|,

formula (18) is an easy consequence of (34) and lemma 5.3 below.



8 J.D. ROSSI, N. SAINTIER

2. Proof of theorem 1.1.

We split the proof in several steps. We first prove that

Step 2.1. There holds

(19) lim sup
p→+∞

λ1/p
p ≤ λ∞.

Proof. Let w ∈ W 1,∞(U) be admissible for λ∞ i.e. maxw = −minU w = 1.

Since w+ and w− are linearly independent, the set

Ap := span{w−, w+} ∩ {u ∈W 1,p(U), ‖u‖W 1,p = 1}

belongs to Ap,2. It then follows from (5) that

(λp + 1)−1 ≥ min
u∈Ap

∫
U

|u|p dx = min
{G=1}

F (a, b)

where F,G : R2 → R are defined by F (a, b) = |a|p‖w+‖pp + |b|p‖w−‖pp, and

G(a, b) = |a|p‖w+‖pW 1,p + |b|p‖w−‖pW 1,p . Assume that ‖∇w+‖∞ < ‖∇w−‖∞.

Writing |b|p in function of |a|p in G = 1 we obtain

(λp + 1)−1 ≥ min
|a|≤‖w+‖−1

W1,p

Cp‖w−‖pp|a|+
‖w−‖pp
‖w−‖pW 1,p

,

Cp =
‖w+‖pp
‖w−‖pp

−
‖w+‖pW 1,p

‖w−‖pW 1,p

.

Recalling that maxw = −minU w = 1, we see that for p→ +∞ we have

Cp > 0⇔ ‖w
+‖W 1,∞

‖w−‖W 1,∞
< 1 + o(1)⇔ ‖∇w+‖∞ < ‖∇w−‖∞ + o(1).

which is true. Hence Cp > 0 for large p so that the minimum is reached at a = 0.

It follows that for p large,

λ
1
p
p ≤

‖∇w−‖p
‖w−‖p

Since ‖∇w+‖∞ < ‖∇w−‖∞ and minw = −1, we get

lim sup
p→+∞

λ
1
p
p ≤

‖∇w−‖∞
‖w−‖∞

≤ ‖∇w‖∞.

If ‖∇w+‖∞ > ‖∇w−‖∞, then writing |a|p in function of |b|p in G = 1 we

obtain the same as before interchanging w+ and w−. We thus obtain that

lim supp→+∞ λ
1
p
p ≤ λ′∞ where λ′∞ is defined as λ∞ by (8) with the additional

constraint that either ‖∇u+‖∞ > ‖∇u−‖∞ or ‖∇u+‖∞ < ‖∇u−‖∞. Notice

that if u is admissible for λ∞ then for an appropriate function η, uε = u + εη,
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ε > 0, is admissible for λ′∞ and limε→0 uε = u in W 1,∞(U). Hence λ∞ = λ′∞,

which ends the proof of (19). Concerning η, if for example, ‖∇u+‖∞ = ‖∇u−‖∞,

given x0 ∈ argmax |∇u+|, take η ∈ C∞(U, [0, 1]) with compact support in a suf-

ficiently small neighborhood of x0 and such that η(x0) = 0, ∇η(x0) = ∇u(x0).

Then u−ε = u− and |∇uε(x0)|2 = (1 + 2ε + ε2)|∇u(x0)|2 > |∇u(x0)|2 so that

‖∇u+
ε ‖∞ > ‖∇u+‖∞ = ‖∇u−‖∞ = ‖∇u−ε ‖∞. �

As a second step, we prove that, up to a subsequence, up converges uniformly

to a minimizer of λ∞.

Step 2.2. Up to a subsequence, up converge uniformly in Ū to some u∞ ∈
W 1,∞(U) which is a minimizer of λ∞ defined by (8). Moreover (7) holds.

Proof. Let up be a normalized minimizer for λp. We first notice that (uq)q≥p is

bounded in W 1,p(U) for any p. Indeed by Hlder’s inequality,∫
U

|∇uq|p ≤ ‖∇uq‖pq |U |1−p/q

so that by (19),

(20) ‖∇uq‖p ≤ λ1/q
q |U |1/p−1/q ≤ Cp.

In the same way

(21) ‖uq‖p ≤ ‖uq‖q|U |1/p−1/q = |U |1/p−1/q ≤ Cp.

Taking p > n it follows by Morreys inequality that (uq)q>p is bounded in

some Hlder space C0,α(Ū), and then, up to a subsequence, that uq → u in C(Ū)

according to Arzela-Ascoli theorem. We can also assume that this convergence

holds weakly in W 1,p(U) for any p.

Let us prove that ‖u‖∞ = 1. Letting q → +∞ and then p → +∞ in (21),

we see that ‖u‖∞ ≤ 1. Suppose that ‖u‖∞ ≤ 1 − 2ε < 1 for some ε > 0. Since

limp→∞ ‖up‖∞ = ‖u‖∞, we have ‖up‖∞ ≤ 1− ε for p large. Then

1 =

∫
U

|up|p dx ≤ (1− ε)p|U | → 0

as p→ +∞, which is absurd.

We now verify that maxu + minu = 0. From
∫
U
|up|p−2up dx = 0 we obtain

that ∫
{up≥0}

|up|p−1 dx =

∫
{up≤0}

|up|p−1 dx.
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We already know that ‖u‖∞ = 1. Assume e.g. that maxŪ u = 1 but that

minŪ u ≥ −1+2ε for some ε > 0. Since up → u in C(Ū), we also have minŪ up ≥
−1 + ε for p big. Then∫

{up≥0}
|up|p−1 dx =

∫
{up≤0}

|up|p−1 dx ≤ (1− ε)p−1|U | → 0

as p→∞. Since (up) is bounded in C(Ū) (because it converges), we obtain

1 =

∫
U

|up|p dx ≤ C
∫
U

|up|p−1 dx→ 0

which is a contradiction.

As ‖u‖∞ = 1 and maxu+minu = 0, u is an admissible test-function for λ∞ as

defined in (8). It follows that λ∞ ≤ ‖∇u‖∞. Independently since uq → u weakly

in W 1,p(U) for any p ≥ 1, we also have from (20) that

‖∇u‖p ≤ lim inf
q→+∞

‖∇uq‖p ≤ |U |1/p lim inf
q→+∞

λ1/q
q ,

Letting p→ +∞, we obtain, using (19), that

λ∞ ≤ ‖∇u‖∞ ≤ lim inf
q→+∞

λ1/q
q ≤ lim sup

p→+∞
λ1/p
p ≤ λ∞

from where we deduce the claim. �

The proof that u∞ is a viscosity solution of (9) is by now standard. We briefly

sketch it for the readers convenience and refer to [14], [9], [10] for more details.

As a preliminary step we verify that

Step 2.3. For p > 2, any continuous weak solution of (6) is a viscosity solution

of (6).

Before doing the proof we introduce some notations. Denote by S the space of

symmetric matrices n× n, and consider the functions Fp : R× Rn × S → R and

Bp : ∂U × R× Rn → R defined for p > 2 by

Fp(u, η,A) =

{
−|η|p−2Tr(A)− (p− 2)|η|p−4(Aη, η)− λp|u|p−2u, if η 6= 0,

−λp|u|p−2u otherwise,

and Bp(x, u, η) = |η|p−2η.ν(x). Observe that Fp(u, η,B) ≤ Fp(u, η,A) if B ≥ A.

Proof. Let u be a weak continuous solution of (6). We only verify that u is a

viscosity super-solution. The proof that u is also a sub-solution is similar. Fix
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some point x0 ∈ Ū and a smooth function φ such that u−φ has a strict minimum

at x0 with u(x0) = φ(x0). We have to prove that

(22)

Fp(u(x0),∇φ(x0), D2φ(x0)) ≥ 0 if x0 ∈ U
max{Fp(u(x0),∇φ(x0), D2φ(x0)), Bp(x0, u(x0),∇φ(x0))} ≥ 0 if x0 ∈ ∂U

Assume first that x0 ∈ U but that (22) does not hold. Then, since u, φ and Fp
are continuous we have that

(23) ∆pφ(x)− λ|u(x)|p−2u(x) = Fp(u(x),∇φ(x), D2φ(x)) < 0 in Bx0
(r)

for some r > 0. Let ψ = φ+m/2 with m = min|x−x0|=r{u(x)− φ(x)} > 0. Then

ψ(x0) − u(x0) > 0 and ψ − u < 0 on ∂Bx0
(r), so that (ψ − u)+, when extended

by 0 outside Bx0(r), has support in Bx0(r). Using it as a test-function in (23)

and (6) gives ∫
{ψ>u}

(|∇ψ|p−2∇ψ − |∇u|p−2∇u)(∇ψ −∇u) dx < 0.

We obtain a contradiction using the inequality (|X|p−2X − |Y |p−2Y )(X − Y ) ≥
C|X − Y |p which holds for some C > 0 and for any X,Y ∈ Rn\{0}. The case

x0 ∈ ∂U is handled in the same way. �

We can now pass to the limit p→ +∞ in (22) (and also in the corresponding

inequality for the subsolution case) to obtain the equation satisfied by u∞.

Step 2.4. The limit u∞ of the up obtained in the first step is a viscosity solution

of (9).

Proof. We prove that u∞ is a supersolution of (9). The proof of the subsolution

property is similar. Fix some point x0 ∈ Ū and a smooth function φ such that

u∞ − φ has a strict minimum at x0 with u∞(x0) = φ(x0). Since up → u∞
uniformly there exist xp ∈ argmax {up − φ} such that xp → x0.

Assume first that x0 ∈ U , so that xp ∈ U for p large. If ∇φ(x0) = 0 then by

definition of ∆∞ we have ∆∞φ(x0) = 0. We assume now that ∇φ(x0) 6= 0. As

up is a viscosity solution of (6) according to the previous step, we have

(24) Fp(xp, up(xp),∇φ(xp), D
2φ(xp)) ≥ 0.

Dividing this inequality by (p− 2)|∇φ(xp)|p−4 we obtain

(25) ∆∞φ(x0) + o(1) ≥ up(xp)|∇φ(xp)|2
 λ

1
p−2
p up(xp)

|∇φ(xp)|(p− 2)
1
p−2

p−2

.
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If u∞(x0) > 0, then, recalling that λ
1
p−2
p → λ∞ (see first step), it follows that we

must have λ∞u∞(x0)
|∇φ(x0)| ≤ 1 i.e. |∇φ(x0)| − λ∞u∞(x0) ≥ 0. Going back to (25) we

also get ∆∞φ(x0) ≥ 0. If u∞(x0) < 0 then we rewrite (24) as

−|∇φ(xp)|−3

 (p− 2)
1
p−1 |∇φ(xp)|

λ
1
p−1
p |up(xp)|

p−1

(∆∞φ(x0) + o(1)) ≤ 1.

If |∇φ(x0)|
λ∞|u∞(x0)| > 1 then we must have ∆∞φ(x0) ≥ 0. Otherwise we obviously have

−|∇φ(x0)| − λ∞u∞(x0) ≥ 0. Eventually if u∞(x0) = 0, then up(xp)→ 0 and we

obtain |up(xp)|p−2up(xp) ≤ up(xp)→ 0. It then follows from (24) that

|∇φ(xp)|p−2∆φ(xp) + (p− 2)|∇φ(xp)|p−4∆∞φ(xp) ≥ o(1).

Dividing this inequality by (p − 2)|∇φ(xp)|p−4 and letting p → +∞ we get

∆∞φ(x0) ≥ 0.

Assume now that x0 ∈ ∂U . We have to prove that

max {F (x0,∇φ(x0), D2φ(x0)), ∂νφ(x0)} ≥ 0.

If xp ∈ U for some subsequence then we can proceed in the same way as before

to obtain F (x0,∇φ(x0), D2φ(x0)) ≥ 0. Assume that xp ∈ ∂U for p big. If

∇φ(x0) = 0 then ∂νφ(x0) = 0. Otherwise, (22) holds with xp in place of x0. If

(24) holds for a subsequence we are done as before. Otherwise

Bp(xp, u(xp),∇φ(xp)) = |∇φ(xp)|p−2∂νφ(xp) ≥ 0 for p large

so that ∂νφ(x0) = limp→∞ ∂νφ(xp) ≥ 0. �

3. Proof of theorem 1.2

Again we divide the proof into several steps. As a first step, we prove that

Step 3.1. There holds λ∞ ≥ 2/diam(U).

Proof. Given some admissible test-function u for λ∞, let x ∈ Ū be a point of

maximum of u, and y ∈ Ū a point of minimum so that u(x) = 1 and u(y) = −1.

Consider also some curve γ : [0, T ]→ U joining y to x. Then

2 = u(x)− u(y) = u(γ(T ))− u(γ(0)) =

∫ T

0

∇u(γ(s))γ′(s) ds

≤ ‖∇u‖∞
∫ T

0

|γ′(s)| ds = ‖∇u‖∞Long(γ).

Taking the infimum over all such curves γ and all admissible u, we obtain 2 ≤
λ∞d(x, y), from which we deduce the claim. �
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We now prove the reverse inequality.

Step 3.2. There holds λ∞ ≤ 2/diam(U).

Proof. We are able to prove this inequality in an elementary way only when U

is convex. Indeed in that case pick two points x0, y0 ∈ ∂U such that diam(U) =

|x0 − y0|. By extremality the vector y0 − x0 must be orthogonal to the tangent

spaces Tx0∂U and Ty0∂U of ∂U at x and y. Moreover Tx0∂U ∩ ∂U = {x0} and

Ty0
∂U ∩ ∂U = {y0} so that U lies strictly between Tx0

∂U and Ty0
∂U . Indeed

if there exists z ∈ Tx0
∂U ∩ ∂U , z 6= x, then |z − y|2 = |z − x|2 + |x − y|2 so

that |z − y| > |x − y| - a contradiction. It follows that the planes orthogonal to

n = y0−x0

|y0−x0| which intersects U have an equation of the form (z − x0)n = s with

s ∈ (0, d), d = diam(U). Hence the function

u(z) =
2

d

(
(z − x0)n− d

2

)
, z ∈ U,

is admissible for λ∞. This yields the upper bound.

To obtain the result in the general case we consider the tug-of-war game de-

scribed in [21]. We use the notation from [21]. Let Y be a curve joining x0, y0 ∈
∂U extremal for diam(U). We consider the function F : Y → [−1, 1] given by

F (x) = −1 + Ld(x0, x), L = 2/diam(U). Then F (x0) = −1 ≤ F (x) ≤ F (y0) = 1

for any x ∈ Y , and F is Lipschitz with Lipschitz constant L (w.r.t. the geodesic

distance in Y ). We consider the tug-of-war game with terminal set Y , pay-off F ,

and running cost f ≡ 0. It is proved in [21] that this game has a value u which

turns out to be an extension of F to U satisfying |u(x)−u(x)| ≤ Ld(x, y) for any

x ∈ U\Y and y ∈ Y (see the proof of theorem 1.4 p190 in [21]).

We now check that u is Lipschitz in U with LipU (u) = L using the idea of the

proof of theorem 1.4 in [21]. Assume that |u(x̃)−u(x̄)| > Ld(x̃, x̄) for some points

x̃, x̄ ∈ U\Y . We consider the tug-of-war game in U with terminal set Y ′ = Y ∪{x̄}
and pay-off F ′ = u. Then u is the value of this new game so that, noting that

LipY ′F
′ = L, we have |u(x) − u(x)| ≤ Ld(x, y) for any x ∈ U\Y ′, y ∈ Y ′. We

obtain a contradiction taking y = x̄, x = x̃.

Observe that since the terminal pay-off F takes value in [−1, 1], we have that

‖u‖∞ ≤ 1, and also that u(x0) = F (x0) = −1, u(y0) = F (y0) = 1 since u

extends F . We can then use u as a test-funtion in (8) to obtain that λ∞ ≤ L =

2/diam(U). �
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4. Proof of theorem 1.3

The proof of theorem 1.3 follows closely the ideas in [6]. Let up be an extremal

for λp normalized by ‖up‖p = 1. Then fp := |up|p−2up ∈ Lp
′
(U) satisfies

(26) ‖fp‖p′ = 1, and

∫
U

fp = 0.

The first step consists in extracting from (fp) a subsequence converging weakly

to some measure f∞ ∈ M(Ū) in the sense that limp→+∞
∫
Ū
φfp dx =

∫
Ū
φdf∞

for any φ ∈ C(Ū).

Step 4.1. Up to a subsequence, the measures fp dx converge weakly as measure

in Ū to some measure f∞ supported in Ū satisfying

(27)

∫
U

f∞ = 0, and

∫
U

|f∞| = 1.

Proof. We claim that

(28) lim
p→+∞

∫
U

|fp| dx = 1.

First, in view of (26), we have that∫
U

|fp| dx ≤ ‖fp‖p′ |U |1−1/p′ = |U |1−1/p′ → 1

and then, recalling that up → u in C(Ū) with ‖u‖∞ = 1,

1 =

∫
U

upfp dx ≤ ‖up‖∞‖fp‖1 = (1 + o(1))‖fp‖1.

It follows in particular that the measures |fp| dx are bounded in M(Ū). Since

Ū is compact, we can then extract from this sequence a subsequence converging

weakly to some measure f∞ ∈M(Ū). Passing to the limit in (26) and (28) gives

(27). �

Consider the functionals Gp, G∞ : (v, σ) ∈ C(Ū)×M(Ū)→ R∪{+∞} defined

by

Gp(v, σ) =


−
∫
U
vσ, if σ ∈ Lp′(U), ‖σ‖p′ ≤ 1,

∫
U
σ = 0,

and v ∈W 1,p(U), ‖∇v‖p ≤ λ1/p
p ,

+∞ otherwise,
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and

G∞(v, σ) =


−
∫
U
v dσ, if σ ∈M(Ū),

∫
U
|σ| ≤ 1,

∫
U
σ = 0,

and v ∈W 1,∞(U), ‖∇v‖∞ ≤ λ∞,
+∞ otherwise.

Endowing the space M(Ū) with the weak convergence of measure, and C(Ū)

with the uniform convergence, we can prove as in [6] that G∞ is the limit of the

Gp in the sense of Γ-convergence:

Step 4.2. The functionals Gp converge in the sense of Γ-convergence to G∞.

The proof is similar as that of Prop. 3.7 in [6] and hence we omit it. As an easy

corollary we obtain that

Step 4.3. (up, fp) is a minimizer for Gp, (u∞, f∞) is a minimizer for G∞, and

(29) G∞(u∞, f∞) = lim
p→+∞

Gp(up, fp) = −1

Proof. Notice that the pair (up, fp) is a minimizer of Gp. Indeed given a pair

(v, σ) admissible for Gp take v̄ ∈ R such that
∫
U
|v − v̄|p−2(v − v̄) dx = 0. Then,

recalling that
∫
σ = 0 and the definition (4) of λp, we have

Gp(v, σ) = −
∫

(v − v̄)σ ≥ −‖v − v̄‖p‖σ‖p′

≥ −λ−1/p
p ‖∇(v − v̄)‖p = −λ−1/p

p ‖∇(v − v̄)‖p
≥ −1 = Gp(up, fp).

Moreover (up, fp)→ (u∞, f∞). It then follows that

lim inf
p→+∞

inf Gp = lim inf
p→+∞

Gp(up, fp) ≥ G∞(u∞, f∞) ≥ inf G∞.

Moreover the lim sup property (19) implies that lim sup inf Gp ≤ inf G∞. Hence

lim
p→+∞

inf Gp = lim
p→+∞

Gp(up, fp) = G∞(u∞, f∞) = inf G∞.

�

We can now relate λ∞ to the Monge-Kantorovich distnce W1. Recall that if

σ ∈ M(Ū), then σ± ∈ M(Ū) denote the positive and negative part of σ. In

particular σ = σ+ − σ−, and |σ| = σ+ + σ−.

Step 4.4. There holds

(30)
2

λ∞
= max
σ∈M(Ū),

∫
U
σ+=

∫
U
σ+=1

W1(σ+, σ−).
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Proof. The conditions
∫
U
σ = 0 and

∫
U
|σ| = 1 are equivalent to

∫
U
σ+ =∫

U
σ+ = 1/2. We can therefore rewrite the fact that the pair (u∞, f∞) is a

minimizer of G∞ as

1 = max
σ∈M(Ū),

∫
U
σ+=

∫
U
σ+=1/2

max
v∈W 1,∞(U), ‖∇v‖∞≤λ∞

∫
U

v(σ+ − σ−),

that is,

2

λ∞
= max
σ∈M(Ū),

∫
U
σ+=

∫
U
σ+=1

max
v∈W 1,∞(U), ‖∇v‖∞≤1

∫
U

v(σ+ − σ−).

We obtain (30) recalling the definition (2) of W1. �

5. Proof of theorems 1.4 and 1.5

We begin this section by some general comments on the shortest-paths taken

from [4]. We define the length of a Lipschitz curves γ : [0, T ]→ Ū by

L(γ) = inf

p−1∑
i=1

|γ(ti+1)− γ(ti)|,

where the infimum is taken over all the finite partition 0 = t1 < .. < tp = T of

[0, T ]. It follows in particular that L is lower semi-continuous with respect to the

pointwise convergence of path (see [4] proposition 2.3.4). We denote by Γ(x, y) the

set of finite length Lipschitz curves connecting x to y. This set is not empty Since

we assumed U connected. We then define the geodesic distance d(x, y) between

two points x, y ∈ Ū as d(x, y) = infγ∈Γ(x,y) L(γ). Following [4], (Ū , d) is a length

space. Notice that a finite length curve γ can always be reparametrized (maybe

using a nondecreasing change of parameter) in order to have constant speed v

in the sense that L(γ|[t,t′]) = v|t − t′| for any t, t′ (see [4][prop. 2.5.9]). We can

then assume that all the considered curves are defined on [0, 1] and have constant

speed. It then follows from Arzela-Ascoli theorem and the semi-continuity of L

as in [4][prop. 2.5.19] that two points x, y ∈ Ū can always be connected by a

shortest path.

Let γ : [0, 1] → Ū be a shortest path. Then γ|U is a straight line (i.e. a

geodesic of U with the Euclidean metric) and γ|∂U is a (smooth) geodesic of ∂U

for the induced metric otherwise. Since a shortest path enters and leaves ∂U

tangentially, we have that γ ∈ C1,1(0, 1). We will therefore restrict Γ(x, y) to

C1,1 - curves. Notice that in general a shortest-path is not C2. Consider for

instance the shortest-path from (−2, 0) to (2, 0) in R2
+\B0(1) which is given by
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y = f(x) with

f(x) =

−
√

3
3 (|x| − 2) if 1

2 ≤ |x| ≤ 2,

√
1− x2 if |x| ≤ 1

2 .

Denote by n the exterior normal to ∂U . Differentiating (γ′, n) = 0, we obtain

the well-known relation (γ′′, n) = −(∇γ′n, γ′) where ∇ is the (covariant) deriva-

tive of Rn. Recalling that γ on ∂U is a geodesic of ∂U if and only if it has normal

acceleration, it follows that

(31) γ′′ = −(∇γ′n, γ′)n on ∂U.

We first verify that

Lemma 5.1. For any x ∈ Ū and any y ∈ Rn, we have for |t| small that

|Dφt(x)y| = |y|+ |y|(DV (x)
y

|y|
,
y

|y|
)t+ |y|O(t2),

where φT is defined in (15) and the remainder O(t2) is uniform in x ∈ Ū and

y ∈ Rn.

Proof. This is a consequence of

|Dφt(x)y|2 = |y + tDV (x)y|2

= |y|2 + 2t(DV (x)y, y) + t2(DV (x)y,DV (x)y)

= |y|2
(

1 + 2t(DV (x)
y

|y|
,
y

|y|
) +O(t2)

)
,

where the coefficient of t and the O(t2) are boundad uniformly in x ∈ Ū and

y ∈ Rn. �

Proof of theorem 1.4. It suffices to prove that

(32) |diam(Ut)− diam(U)| ≤ Ct.

Writing that

diam(Ut) = diam(φt(U)) = max
x,y∈Ū

inf
γ∈Γ(x,y)

Long(φt ◦ γ),

it is easily seen that (32) will follow if we can prove that

(33) Long(φt ◦ γ) = (1 +O(t))Long(γ)

with O(t) uniform in γ ∈ Γ(x, y), x, y ∈ Ū . This follows from the following lemma:
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Lemma 5.2. Given a C1 curve γ : [a, b]→ Ū , we have that

Long(φt ◦ γ) =

Long(γ) + t

∫ b

a

(DV (γ(s))γ′(s), γ′(s))
ds

|γ′(s)|
+O(t2)

∫ b

a

|γ′(s)| ds,
(34)

where the O(t2) does not depend on γ.

Proof. Since

Long(φt ◦ γ) =

∫ b

a

∣∣∣∣ ddsφt(γ(s))

∣∣∣∣ dx =

∫ b

a

|Dφt(γ(s))γ′(s)| dx,

the result follows from lemma 5.1. �

Proof of theorem 1.5. We assume from now on that diam(U) has an unique

extremal curve γ∗, i.e. diam(U) = Long(γ∗). Up to reparametrizing, we can

assume that γ∗ : [0, 1] → Ū has constant-speed equal to diam(U). We let x∗ =

γ∗(0), y∗ = γ∗(1).

Let γ∗t be an extremal for Ut, i.e. diam(Ut) = Long(γ∗t ). We can assume that

γ∗t : [0, 1]→ Ūt has constant-speed. Denote by nt the unit exterior normal to Ut.

Then |∇nt| ≤ Cste for |t| small. Moreover |γ∗′t | = diam(Ut) ≤ Cste in view of

(32). It thus follows from (31) that

(35) ‖γ∗t ‖C1,1 ≤ C

uniformly for |t| small. We first prove that

Step 5.1. γ∗t C
1-converge as t→ 0 to ±γ∗.

Proof. It follows from (35) and Arzela-Ascoli theorem that there exists a curve

γ̃ : [0, 1] → Rn such that, up to a subsequence, γ∗t → γ̃ in C1 as t → 0. In par-

ticular γ̃ takes values in Ū , has constant-speed, and limt→0 Long(γ∗t ) = Long(γ̃).

According to (32), we thus have

Long(γ̃) = Long(γ∗t ) + o(1) = diam(Ut) + o(1)→ diam(U)

as t → 0. Therefore γ̃ is an constant-speed extremal for diam(U) so that γ̃ =

±γ∗. �

Let us suppose that γ∗t → γ∗ in the C1-norm. In particular x∗t := γ∗t (0)→ x∗

and y∗t := γ∗t (1)→ y∗.

Consider K = (B̄x∗(ε0)∩∂U)× (B̄y∗(ε0)∩∂U) where ε0 is given in hypothesis

(2) of theorem 1.5. In view of (35) we can write that

diam(Ut) = max
x,y∈K

d(φt(x), φy(y)) = max
x,y∈K

inf
γ∈Γ(x,y)

Long(φt ◦ γ),
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where Γ(x, y) is the set of constant-speed C1,1-curve γ : [0, 1] → Ū , γ(0) = x,

γ(1) = y, satisfying

(36) ‖γ‖C1,1 ≤ C

for some positive constant C uniform in γ ∈ Γ(x, y), (x, y) ∈ K. We also let

Γ = ∪(x,y)∈KΓ(x, y). Notice that each Γ(x, y), (x, y) ∈ K, is compact for the

C1-norm thanks to (36).

The differentiability of t → diam(Ut) at t = 0 with formula (17) will follow

from the two following lemma whose proof is similar to [19][thm.2] and hence we

omit the details.

Lemma 5.3. Let Γ be a compact metric set. Consider a map A : (γ, t) ∈ Γ ×
[−ε, ε]→ A(γ, t) ∈ R such that

(H1) A is continuous at any point (γ, 0), γ ∈ Γ,

(H2) for any γ ∈ Γ, there holds that

(37) A(γ, t) = A(γ, 0) + tA1(γ) + o(t),

where the o(t) is uniform in γ ∈ Γ,

(H3) A(·, 0) attains its minimum at an unique point γ∗,

(H4) A1 is continuous at γ∗ and bounded over Γ.

Then the function t→ µ(t) := infγ∈ΓA(γ, t) is differentiable at t = 0 with deriv-

ative

µ′(0) = A1(γ∗).

Notice that under the same hypothesis an analogous result holds for a maxi-

mization problem. We keep on using the notations of the previous lemma. We

now consider a family of compact subsets Γλ, λ ∈ K, of Γ, and the map A defined

in (37) assuming first that

(H1’) A is continuous at any point (γ, 0), γ ∈ Γ, and (37) holds with a remainder

o(t) uniform in γ ∈ Γλ, λ ∈ K.

We also assume that the map λ→ Γλ is continuous in the sense that

(H2’) if γλ ∈ Γλ converge as λ→ λ0 (for some λ0) to some γ then γ ∈ Γλ0
,

(H3’) for any γ ∈ Γλ and any sequence λn → λ, there exist γn ∈ Γλn s.t.

γn → γ.

We eventually make the following assumptions:

(H4’) A(·, 0) attains its minimum over Γλ at an unique point denoted γ∗λ,

(H5’) the function µ(λ, 0) := minγ∈Γλ A(γ, 0) attains its maximum at an unique

point λ∗,
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(H6’) A1 is continuous over Γ.

Lemma 5.4. Assume that assumptions (H1’) - (H6’) hold. Then the function

t→ m(t) := supλ∈K infγ∈Γλ A(γ, t) is differentiable at t = 0 with derivative

m′(0) = A1(γ∗λ∗),

where λ∗ is defined in (H5’), and γ∗λ∗ is defined in (H4’).

Proof. Let µ(λ, t) = infγ∈Γλ A(γ, t), λ ∈ K, |t| < ε. For a fixed λ ∈ K, we can

apply lemma 5.3 with Γ = Γλ to obtain µ(λ, t) = µ(λ, 0) +A1(γ∗λ)t+ oλ(t) where

oλ(t) → 0 as t → 0 for a fixed λ, and γ∗λ is defined in (H4’). We only need to

apply again lemma 5.3 to m(t) := supλ ∈ Kµ(λ, t) (more precisely the analogous

version of lemma 5.3 for a maximisation problem). We now check that hypothesis

(H1)-(H4) of lemma 5.3 hold in that case.

We first verify that µ is continuous at (λ, 0), λ ∈ K. Fix λn → λ and tn → 0.

First take γn ∈ Γλn such that

(38) A(γn, tn) ≤ µ(λn, tn) +
1

n
.

Up to a subsequence the γn converge to some γ belonging to γλ according to

(H2’). Since A is continuous at (γ, 0) we can pass to the limit in (38) to ob-

tain lim inf µ(λn, tn) ≥ A(γ, 0) ≥ µ(λ, 0). To prove the opposite inequality we

consider, using (H3’), γn ∈ Γλn such that γn → γ∗λ. Then

µ(λ, 0) = A(γ∗λ, 0) = A(γn, tn) + o(1) ≥ µ(λn, tn) + o(1).

Passing to the limit gives lim supµ(λn, tn) ≤ µ(λ, 0).

It remains to prove that (i) the oλ(t) is uniform in λ ∈ K, and that (ii) A1(γ∗λ)

is continuous in λ.

Concerning (i), we first write that

oλ(t) = µ(λ, t)− µ(λ, 0)−A1(γ∗λ)t ≤ A(γ∗λ, t)−A(γ∗λ, 0)−A1(γ∗λ)t,

where γ∗λ is defined in (H4’). According to hypothesis (H1’) the right hand side

goes to 0 as t→ 0 uniformly in λ ∈ K. Independently, given η > 0 we pick some

γ∗λ,t ∈ Γλ such that µ(λ, t) ≥ A(γ∗λ,t, t)− η, and write

oλ(t) = µ(λ, t)− µ(λ, 0)−A1(γ∗λ)t

≥ A(γ∗λ,t, t)− η −A(γ∗λ,t, 0)−A1(γ∗λ)t

= (A1(γ∗λ,t)−A1(γ∗λ))t+ o(t)− η,
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where the o(t) in the right hand side is uniform in λ according to (H1’). Since

A1 is bounded over Γ (according to (H6’) and the compactness of Γ), we get

oλ(t) ≥ −C|t|+ o(t)− η for any η > 0 with o(t) uniform in λ.

Concerning (ii), it suffices to prove, in view of (H6’), that λ→ γ∗λ is continuous.

Fix some λ ∈ K and a sequence λn → λ. Since Γ is compact, the γ∗λn converge,

up to a subsequence, to some γλ which belongs to Γλ according to (H2’). Given

γ̃ ∈ Γλ and γ̃λn ∈ Γλn converging to γ̃ (which exist according to (H3’)), passing to

the limit in A(γ∗λn , 0) ≤ A(γ̃λn , 0) gives A(γλ, 0) ≤ A(γ̃, 0) for any γ̃ ∈ Γλ. In view

of (H4’) we must have γλ = γ∗λ. Thus γ∗λn → γ∗λ for any sequence λn → λ. �

We can now end the proof of Theorem 1.5. Recall that γ∗ : [0, 1] → Ū is the

unique constant-speed curve such that diam(U) = Long(γ∗).

Step 5.2. If for any (x, y) ∈ K, there exists an unique curve γ ∈ Γ(x, y) such that

d(x, y) = Long(γ), then t→ diam(Ut) is differentiable at t = 0 with derivative

(39)
d

dt
diam(Ut)|t=0 =

1

diam(U)

∫ 1

0

(DV (γ∗(s))γ∗
′
(s), γ∗

′
(s)) ds.

Proof. We apply lemma 5.4 with λ = (x, y) ∈ K, Γλ = Γ(x, y) which is compact

for the C1-convergence, and, from (34),

A(γ, t) = Long(φt ◦ γ), A1(γ) =

∫ 1

0

(DV (γ(s))γ′(s), γ′(s))
ds

|γ′(s)|
.

Then according to (34) and (36), we have A(γ, t) = A(γ, 0) +A1(γ) + o(t) where

the remainder o(t) is uniform in γ ∈ Γλ, λ ∈ K. In particular (H1’) holds.

Moreover (H2’), (H3’), (H6’) hold, and (H4’), (H5’) hold by assumption. Thus

d

dt
diam(Ut)|t=0 = A1(γ∗)

which is (39) recalling that |γ∗′ | = diam(U). �
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48, Springer.

[13] R. Jensen, Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient.

Arch. Rational Mech. Anal. 123 (1993), 51–74.

[14] P. Juutinen, P. Lindqvist and J. J. Manfredi, The ∞−eigenvalue problem. Arch. Rational

Mech. Anal., 148 (1999), 89–105.

[15] P. Juutinen and P. Lindqvist, On the higher eigenvalues for the ∞−eigenvalue problem.

Calc. Var. Partial Differential Equations, 23 (2005), no. 2, 169–192.

[16] A. L, Nonlinear Analysis, 64 (2006), 1057-1099.

[17] A. L, Electronic Journal of Differential Equations, 2006 (111), 1-9, 2006.

[18] G.M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Non-

linear Anal., 12 (1988) 1203-1219.

[19] J. Garcia-Meli J. Sabina de Lis, On the perturbation of eigenvalues for the p-Laplacian,

Comptes Rendus Acad. Sci. Ser. I Math. 332 (10) (2001), 893-898.

[20] J.C. Navarro, J.D. Rossi, N. Saintier, A. San Antolin, The dependence of the first eigenvalue

of the infinity Laplacian with respect to the domain, Glasgow Mathematical Journal, to

appear.

[21] Y. Peres, O. Schramm, S. Sheffield, D. Wilson, Tug-of-war and the infinity Laplacian, J.

Amer. Math. Soc. 22 (1), 2009, 167-210.

[22] C. Villani, Optimal transport, old and new, Grundlehren der Mathematischen Wis-

senschaften, 338. Springer-Verlag, Berlin, 2009.

(J.D. Rossi.) CONICET and Dep. de Matemática, FCEyN, Universidad de Buenos
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